Author	Title of abstract	Theme/Session	Poster number
Huiluo Cao	Global overview of the origin and	The AMR Burden – Epidemiology,	
	expansion of Staphylococcus	Population genetics, and	4
	aureus Clonal Complex 59	Horizontal gene transfers	
Jia Yee Ho	Genome-resolved profile of	The AMR Burden – Epidemiology,	
	antimicrobial resistant bacteria	Population genetics, and	
	in wastewater	Horizontal gene transfers	5
	through culture-enriched		
	metagenomics		
Calvin Chow	Diversity and antimicrobial	The AMR Burden – Epidemiology,	
	resistance profile of	Population genetics, and	
	Enterococcus faecalis in	Horizontal gene transfers	6
	environmental		
	samples		
Trevor Tan	Utility of whole genome	The AMR Burden – Epidemiology,	
	sequencing for detection of	Population genetics, and	
	carbapenemase production in	Horizontal gene transfers	10
	mCIM positive, Xpert Carba-R		
	negative Klebsiella pneumoniae.		
Xiaoqiong Gu	Gut Ruminococcaceae levels at	The AMR Burden – Epidemiology,	
1 0	baseline correlate with risk of	Population genetics, and	11
	antibiotic-associated diarrhea	Horizontal gene transfers	
Yaoping Liu	Rapid antimicrobial resistance	The AMR Burden – Epidemiology,	
. 0	gene expression profiling of low-	Population genetics, and	
	abundance	Horizontal gene transfers	
	samples by electrostatic	J	
	microfiltration-enabled pathogen		12
	enrichment interfacing		
	nanopore direct RNA sequencing		
Yerim Kim	Targeting autophagy to combat	The AMR Burden – Epidemiology,	
	chronic urinary tract infections	Population genetics, and	13
	omenne anniar, maer meetiene	Horizontal gene transfers	
		Tronzentat gone transiere	
Lian Zheng Jie (Zack)	Genetic basis of I-complex	Plasmid transmission and	
	plasmid stability and conjugation	Evolution of Resistance	16
	processing and conjugation		
Wen Wen Low	Characterization of entry	Plasmid transmission and	
	exclusion phenotypes in	Evolution of Resistance	17
	clinically relevant IncP plasmids		
Yahua Chen	Killing of low- and non-receptive	Plasmid transmission and	
	recipients by a multidrug-	Evolution of Resistance	18
	resistant conjugative plasmid		
Chendi Zhu	Tracing the floating of	Plasmid transmission and	
	antimicrobial resistance in E. coli	Evolution of Resistance	19
	across diverse hosts		
Guodong Oo	Restriction modification systems	Plasmid transmission and	
	play a major role in	Evolution of Resistance	20
	carbapenemase-encoding		20
	plasmid acquisition in hvKp		
Piklu Roy Chowdhury	Are we using genomic	Plasmid transmission and	
	epidemiology to its maximum	Evolution of Resistance	21
	capacity in AMR research?		

Michelle M. Mitchener	Uncovering a role for	Biofilms and microbiome	
	epitranscriptomic changes in E.		22
	faecalis growth and biofilm		22
	formation		
Rutuparna Kulkarni	MICROCOLONY DIFFUSION	Biofilms and microbiome	
	ANALYSIS ACROSS BIOFILMS		
	USING SINGLE MOLECULE		23
	SPECTROSCOPY AND		
	MICROSCOPY		
Stacey-Ann LEE	Hypervirulent Klebsiella	Biofilms and microbiome	
	pneumoniae induces bile		24
	dysbiosis during invasive gut		24
	infection		
Tan Si Yin	Investigating the Attachment of	Biofilms and microbiome	
	Streptococcus pneumoniae to		25
	the Host Cells		
Jingjing Sun	A platform for high-throughput	Mechanisms of Drug Resistance	
	tRNA modification profiling:		
	Linking the tRNA		00
	epitranscriptome to metabolic		26
	pathways in Pseudomonas		
	aeruginosa		
Wee Boon Tan	Primary role of the Tol-Pal	Mechanisms of Drug Resistance	
	complex in bacterial outer		27
	membrane lipid homeostasis		
Khoo Bo Yan	Evaluation of NG-Test CARBA 5	Mechanisms of Drug Resistance	
	version 2, Cepheid Xpert Carba-		
	R, and carbapenem		
	inactivation methods in		
	comparison to whole-genome		28
	sequencing for the identification		
	of carbapenemases in non-		
	fermenting Gram-negative bacilli		
Kumaravel Kandaswamy	Phytochemicals from	Mechanisms of Drug Resistance	
	Combretaceae spp Reduces the		
	Emergence of Small Colony		29
	Variants both in single and dual		
	species biofilms model systems		
Ngo Ngoc Phuong Thuy	The in vitro evolution and impact	Mechanisms of Drug Resistance	
	of azithromycin resistance		
	mutations in Salmonella Typhi		30
Zeus J. Nair	Combinatorial Genetic Approach	Mechanisms of Drug Resistance	
	to Disrupt Biofilm-associated		
	Antimicrobial Resistance in		31
	Enterococcus faecalis		

Wilfried MOREIRA	Screening of the PA14NR	Mechanisms of Drug Resistance	
	transposon mutant library identifies genes involved in resistance to bacteriophage infection in Pseudomomas aeruginosa	_	32
Justin Zik	A dual transposon sequencing (Dual-TnSeq) system to probe genome-wide genetic interactions in bacteria	Mechanisms of Drug Resistance	33
Cheam Guoxiang	Identifying minimum bacterial consortia to exert colonization resistance against Klebsiella pneumoniae	Vaccines, Alternative Therapies, and Drug discovery	34
Jun Hao Liew	DESIGNING OF A LAYERED PHAGE COCKTAIL AGAINST MULTI-DRUG RESISTANT MYCOBACTERIUM ABSCESSUS OF SMOOTH MORPHOTYPE	Vaccines, Alternative Therapies, and Drug discovery	35
Ning Li	Guanidinium-Perfunctionalized Multivalent Molecular Spheres as Highly Potent Antimicrobials against Planktonic Cells and Biofilm	Vaccines, Alternative Therapies, and Drug discovery	36
Belicia Sok Yee Chan	Investigation of the antimicrobial activity of Andrographis paniculata (AP) (Burm. f.) Nees	Vaccines, Alternative Therapies, and Drug discovery	37
Benjamin Sian Teck Lee	Characterization of a Plasmodium falciparum epitranscriptomic enzyme in the quest for novel antimalarial drug targets	Vaccines, Alternative Therapies, and Drug discovery	38
Boon Chong GOH	Engineered phage lysins as novel antibacterial agents	Vaccines, Alternative Therapies, and Drug discovery	39
Boon Chong GOH	A synergistic antibiotic combination against pulmonary NTM	Vaccines, Alternative Therapies, and Drug discovery	40
Jong-Seok Kim	Isoegomaketone Exhibits Potential as a New Mycobacterium abscessus Inhibitor	Vaccines, Alternative Therapies, and Drug discovery	41
Joseph Sungminshin	Exploring the Membrane-Active Interactions of Long-Chain Fatty Acids and Liposomal Fatty Acids for Antibacterial Applications	Vaccines, Alternative Therapies, and Drug discovery	42

LALIT MOHAN	FORMULATION OF AN EFFECTIVE PHAGE COCKTAIL FOR THE TREATMENT OF SEQUENCE TYPE 2 ACINETOBACTER BAUMANNII STRAINS	Vaccines, Alternative Therapies, and Drug discovery	43
Li Jianguo	Development of natural product based peptidomimetics targeting multi-drug resistant bacteria	Vaccines, Alternative Therapies, and Drug discovery	44
Liang Cui	LC/MS analysis of DNA modifications in mycobacteriophage Muddy	Vaccines, Alternative Therapies, and Drug discovery	45
Matti Jalasvuori	Phagenomics: an online platform for bacteriophage analysis – streamlining the path towards phage therapy	Vaccines, Alternative Therapies, and Drug discovery	46
Michelle Novais de Paula	Synergy in action: octapeptins potentiate repurposed drugs against antimicrobial resistance	Vaccines, Alternative Therapies, and Drug discovery	47
Ming Li	Degradable cationic polyimidazoliums synergize with colistin to exert strong bactericidal killing in colistinresistant carbapenem-resistant Enterobacteriaceae (CRE) clinical isolates.	Vaccines, Alternative Therapies, and Drug discovery	48
Nurul Ayuni Norman	Strategic combination of phages for potential therapeutic application against Klebsiella pneumoniae	Vaccines, Alternative Therapies, and Drug discovery	49
Zhang Dong	Unveiling the antibacterial effect of membrane-intercalating conjugated oligo-electrolytes (COEs) and their impact on bacterial membrane composition	Vaccines, Alternative Therapies, and Drug discovery	50
Raksha Anand	Green Nanoparticle-Based Broad- Spectrum Biocidal Activity and Potential Enhancements	Vaccines, Alternative Therapies, and Drug discovery	51
Ron Chanvutha	PHAGE SUSCEPTIBILITY AND PHAGE RESISTANCE OF HYPERVIRULENT KLEBSIELLA PNEUMONIAE SEQUENCE TYPE 86 MEDIATED BY KL2-SPECIFIC PHAGES	Vaccines, Alternative Therapies, and Drug discovery	52
Ronni A G da Silva	Deploying vancomycin as the Achilles' heels of vancomycin resistance	Vaccines, Alternative Therapies, and Drug discovery	53

Shobana Rajaramon	Smart PVA Hydrogel Loaded with	Vaccines, Alternative Therapies,	
	Ciprofloxacin and 5-NPPP for	and Drug discovery	
	Targeted Treatment of		F.4
	Staphylococcus aureus Skin		54
	Infections: A Bioisosteric		
	Approach		
Si-Nguyen T. Mai	Bacterial antagonistic	Vaccines, Alternative Therapies,	
	interactions for suppressing	and Drug discovery	55
	multidrug-resistant Klebsiella		55
	pneumoniae		
Sumin Choi	Re-Sensitizing Colistin-Resistant	Vaccines, Alternative Therapies,	
	Gram-Negative Pathogens Using	and Drug discovery	56
	Predatory Microbes		56
Yushu Chen	A conserved membrane protein	Vaccines, Alternative Therapies,	
	negatively regulates Mce1	and Drug discovery	57
	complexes in mycobacteria		
Vaz S. S. Gnanam	Bactfast®: Enhancing ICU care	Industry Perspectives on AMR	
	through the identification of	Solutions	
	bacteria and Antimicrobial		9
	resistance (AMR) information		ŭ
	using Next-generation		
	Sequencing (NGS)		
Kai Yee Toh	Prevalence of Klebsiella	Biofilms and microbiome	
	pneumonia (Kp) carriage in		
	Singapore healthy population		58
	assessed by metagenome-		
	assembled genomes		